Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Engineered polyamine catabolism preinduces tolerance of tobacco to bacteria and oomycetes.

Identifieur interne : 001B23 ( Main/Exploration ); précédent : 001B22; suivant : 001B24

Engineered polyamine catabolism preinduces tolerance of tobacco to bacteria and oomycetes.

Auteurs : Panagiotis N. Moschou [Grèce] ; Panagiotis F. Sarris ; Nicholas Skandalis ; Athina H. Andriopoulou ; Konstantinos A. Paschalidis ; Nickolas J. Panopoulos ; Kalliopi A. Roubelakis-Angelakis

Source :

RBID : pubmed:19218362

Descripteurs français

English descriptors

Abstract

Polyamine oxidase (PAO) catalyzes the oxidative catabolism of spermidine and spermine, generating hydrogen peroxide. In wild-type tobacco (Nicotiana tabacum 'Xanthi') plants, infection by the compatible pathogen Pseudomonas syringae pv tabaci resulted in increased PAO gene and corresponding PAO enzyme activities; polyamine homeostasis was maintained by induction of the arginine decarboxylase pathway and spermine was excreted into the apoplast, where it was oxidized by the enhanced apoplastic PAO, resulting in higher hydrogen peroxide accumulation. Moreover, plants overexpressing PAO showed preinduced disease tolerance against the biotrophic bacterium P. syringae pv tabaci and the hemibiotrophic oomycete Phytophthora parasitica var nicotianae but not against the Cucumber mosaic virus. Furthermore, in transgenic PAO-overexpressing plants, systemic acquired resistance marker genes as well as a pronounced increase in the cell wall-based defense were found before inoculation. These results reveal that PAO is a nodal point in a specific apoplast-localized plant-pathogen interaction, which also signals parallel defense responses, thus preventing pathogen colonization. This strategy presents a novel approach for producing transgenic plants resistant to a broad spectrum of plant pathogens.

DOI: 10.1104/pp.108.134932
PubMed: 19218362
PubMed Central: PMC2663742


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Engineered polyamine catabolism preinduces tolerance of tobacco to bacteria and oomycetes.</title>
<author>
<name sortKey="Moschou, Panagiotis N" sort="Moschou, Panagiotis N" uniqKey="Moschou P" first="Panagiotis N" last="Moschou">Panagiotis N. Moschou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Crete, Crete, 71409 Heraklion, Greece.</nlm:affiliation>
<country xml:lang="fr">Grèce</country>
<wicri:regionArea>Department of Biology, University of Crete, Crete, 71409 Heraklion</wicri:regionArea>
<wicri:noRegion>71409 Heraklion</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sarris, Panagiotis F" sort="Sarris, Panagiotis F" uniqKey="Sarris P" first="Panagiotis F" last="Sarris">Panagiotis F. Sarris</name>
</author>
<author>
<name sortKey="Skandalis, Nicholas" sort="Skandalis, Nicholas" uniqKey="Skandalis N" first="Nicholas" last="Skandalis">Nicholas Skandalis</name>
</author>
<author>
<name sortKey="Andriopoulou, Athina H" sort="Andriopoulou, Athina H" uniqKey="Andriopoulou A" first="Athina H" last="Andriopoulou">Athina H. Andriopoulou</name>
</author>
<author>
<name sortKey="Paschalidis, Konstantinos A" sort="Paschalidis, Konstantinos A" uniqKey="Paschalidis K" first="Konstantinos A" last="Paschalidis">Konstantinos A. Paschalidis</name>
</author>
<author>
<name sortKey="Panopoulos, Nickolas J" sort="Panopoulos, Nickolas J" uniqKey="Panopoulos N" first="Nickolas J" last="Panopoulos">Nickolas J. Panopoulos</name>
</author>
<author>
<name sortKey="Roubelakis Angelakis, Kalliopi A" sort="Roubelakis Angelakis, Kalliopi A" uniqKey="Roubelakis Angelakis K" first="Kalliopi A" last="Roubelakis-Angelakis">Kalliopi A. Roubelakis-Angelakis</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19218362</idno>
<idno type="pmid">19218362</idno>
<idno type="doi">10.1104/pp.108.134932</idno>
<idno type="pmc">PMC2663742</idno>
<idno type="wicri:Area/Main/Corpus">001B55</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B55</idno>
<idno type="wicri:Area/Main/Curation">001B55</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001B55</idno>
<idno type="wicri:Area/Main/Exploration">001B55</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Engineered polyamine catabolism preinduces tolerance of tobacco to bacteria and oomycetes.</title>
<author>
<name sortKey="Moschou, Panagiotis N" sort="Moschou, Panagiotis N" uniqKey="Moschou P" first="Panagiotis N" last="Moschou">Panagiotis N. Moschou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Crete, Crete, 71409 Heraklion, Greece.</nlm:affiliation>
<country xml:lang="fr">Grèce</country>
<wicri:regionArea>Department of Biology, University of Crete, Crete, 71409 Heraklion</wicri:regionArea>
<wicri:noRegion>71409 Heraklion</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sarris, Panagiotis F" sort="Sarris, Panagiotis F" uniqKey="Sarris P" first="Panagiotis F" last="Sarris">Panagiotis F. Sarris</name>
</author>
<author>
<name sortKey="Skandalis, Nicholas" sort="Skandalis, Nicholas" uniqKey="Skandalis N" first="Nicholas" last="Skandalis">Nicholas Skandalis</name>
</author>
<author>
<name sortKey="Andriopoulou, Athina H" sort="Andriopoulou, Athina H" uniqKey="Andriopoulou A" first="Athina H" last="Andriopoulou">Athina H. Andriopoulou</name>
</author>
<author>
<name sortKey="Paschalidis, Konstantinos A" sort="Paschalidis, Konstantinos A" uniqKey="Paschalidis K" first="Konstantinos A" last="Paschalidis">Konstantinos A. Paschalidis</name>
</author>
<author>
<name sortKey="Panopoulos, Nickolas J" sort="Panopoulos, Nickolas J" uniqKey="Panopoulos N" first="Nickolas J" last="Panopoulos">Nickolas J. Panopoulos</name>
</author>
<author>
<name sortKey="Roubelakis Angelakis, Kalliopi A" sort="Roubelakis Angelakis, Kalliopi A" uniqKey="Roubelakis Angelakis K" first="Kalliopi A" last="Roubelakis-Angelakis">Kalliopi A. Roubelakis-Angelakis</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (MeSH)</term>
<term>Cucumovirus (pathogenicity)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genetic Engineering (MeSH)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oomycetes (pathogenicity)</term>
<term>Oomycetes (physiology)</term>
<term>Oxidoreductases Acting on CH-NH Group Donors (genetics)</term>
<term>Oxidoreductases Acting on CH-NH Group Donors (metabolism)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (microbiology)</term>
<term>Plant Leaves (virology)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Polyamines (metabolism)</term>
<term>Pseudomonas syringae (pathogenicity)</term>
<term>Pseudomonas syringae (physiology)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Salicylic Acid (metabolism)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Tobacco (enzymology)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (microbiology)</term>
<term>Tobacco (virology)</term>
<term>Virulence (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Acide salicylique (métabolisme)</term>
<term>Adaptation physiologique (MeSH)</term>
<term>Cucumovirus (pathogénicité)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Feuilles de plante (virologie)</term>
<term>Génie génétique (MeSH)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Oomycetes (pathogénicité)</term>
<term>Oomycetes (physiologie)</term>
<term>Oxidoreductases acting on CH-NH group donors (génétique)</term>
<term>Oxidoreductases acting on CH-NH group donors (métabolisme)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Phénotype (MeSH)</term>
<term>Polyamines (métabolisme)</term>
<term>Pseudomonas syringae (pathogénicité)</term>
<term>Pseudomonas syringae (physiologie)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Tabac (enzymologie)</term>
<term>Tabac (génétique)</term>
<term>Tabac (microbiologie)</term>
<term>Tabac (virologie)</term>
<term>Virulence (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Oxidoreductases Acting on CH-NH Group Donors</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Hydrogen Peroxide</term>
<term>Oxidoreductases Acting on CH-NH Group Donors</term>
<term>Polyamines</term>
<term>RNA, Messenger</term>
<term>Salicylic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Feuilles de plante</term>
<term>Oxidoreductases acting on CH-NH group donors</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Acide salicylique</term>
<term>Oxidoreductases acting on CH-NH group donors</term>
<term>Peroxyde d'hydrogène</term>
<term>Polyamines</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Cucumovirus</term>
<term>Oomycetes</term>
<term>Pseudomonas syringae</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Cucumovirus</term>
<term>Oomycetes</term>
<term>Pseudomonas syringae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Oomycetes</term>
<term>Pseudomonas syringae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Oomycetes</term>
<term>Pseudomonas syringae</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Plant Leaves</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genetic Engineering</term>
<term>Host-Pathogen Interactions</term>
<term>Molecular Sequence Data</term>
<term>Phenotype</term>
<term>Plants, Genetically Modified</term>
<term>Stress, Physiological</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Données de séquences moléculaires</term>
<term>Génie génétique</term>
<term>Interactions hôte-pathogène</term>
<term>Phénotype</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stress physiologique</term>
<term>Virulence</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Polyamine oxidase (PAO) catalyzes the oxidative catabolism of spermidine and spermine, generating hydrogen peroxide. In wild-type tobacco (Nicotiana tabacum 'Xanthi') plants, infection by the compatible pathogen Pseudomonas syringae pv tabaci resulted in increased PAO gene and corresponding PAO enzyme activities; polyamine homeostasis was maintained by induction of the arginine decarboxylase pathway and spermine was excreted into the apoplast, where it was oxidized by the enhanced apoplastic PAO, resulting in higher hydrogen peroxide accumulation. Moreover, plants overexpressing PAO showed preinduced disease tolerance against the biotrophic bacterium P. syringae pv tabaci and the hemibiotrophic oomycete Phytophthora parasitica var nicotianae but not against the Cucumber mosaic virus. Furthermore, in transgenic PAO-overexpressing plants, systemic acquired resistance marker genes as well as a pronounced increase in the cell wall-based defense were found before inoculation. These results reveal that PAO is a nodal point in a specific apoplast-localized plant-pathogen interaction, which also signals parallel defense responses, thus preventing pathogen colonization. This strategy presents a novel approach for producing transgenic plants resistant to a broad spectrum of plant pathogens.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19218362</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>06</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>149</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2009</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Engineered polyamine catabolism preinduces tolerance of tobacco to bacteria and oomycetes.</ArticleTitle>
<Pagination>
<MedlinePgn>1970-81</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.108.134932</ELocationID>
<Abstract>
<AbstractText>Polyamine oxidase (PAO) catalyzes the oxidative catabolism of spermidine and spermine, generating hydrogen peroxide. In wild-type tobacco (Nicotiana tabacum 'Xanthi') plants, infection by the compatible pathogen Pseudomonas syringae pv tabaci resulted in increased PAO gene and corresponding PAO enzyme activities; polyamine homeostasis was maintained by induction of the arginine decarboxylase pathway and spermine was excreted into the apoplast, where it was oxidized by the enhanced apoplastic PAO, resulting in higher hydrogen peroxide accumulation. Moreover, plants overexpressing PAO showed preinduced disease tolerance against the biotrophic bacterium P. syringae pv tabaci and the hemibiotrophic oomycete Phytophthora parasitica var nicotianae but not against the Cucumber mosaic virus. Furthermore, in transgenic PAO-overexpressing plants, systemic acquired resistance marker genes as well as a pronounced increase in the cell wall-based defense were found before inoculation. These results reveal that PAO is a nodal point in a specific apoplast-localized plant-pathogen interaction, which also signals parallel defense responses, thus preventing pathogen colonization. This strategy presents a novel approach for producing transgenic plants resistant to a broad spectrum of plant pathogens.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Moschou</LastName>
<ForeName>Panagiotis N</ForeName>
<Initials>PN</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Crete, Crete, 71409 Heraklion, Greece.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sarris</LastName>
<ForeName>Panagiotis F</ForeName>
<Initials>PF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Skandalis</LastName>
<ForeName>Nicholas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Andriopoulou</LastName>
<ForeName>Athina H</ForeName>
<Initials>AH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Paschalidis</LastName>
<ForeName>Konstantinos A</ForeName>
<Initials>KA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Panopoulos</LastName>
<ForeName>Nickolas J</ForeName>
<Initials>NJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Roubelakis-Angelakis</LastName>
<ForeName>Kalliopi A</ForeName>
<Initials>KA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AB027752</AccessionNumber>
<AccessionNumber>AB027753</AccessionNumber>
<AccessionNumber>AB052964</AccessionNumber>
<AccessionNumber>AB121785</AccessionNumber>
<AccessionNumber>AB200262</AccessionNumber>
<AccessionNumber>AJ002204</AccessionNumber>
<AccessionNumber>NTU94192</AccessionNumber>
<AccessionNumber>U66264</AccessionNumber>
<AccessionNumber>X12485</AccessionNumber>
<AccessionNumber>X63603</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>02</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011073">Polyamines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.5.-</RegistryNumber>
<NameOfSubstance UI="D000587">Oxidoreductases Acting on CH-NH Group Donors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.5.3.-</RegistryNumber>
<NameOfSubstance UI="C022411">polyamine oxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>O414PZ4LPZ</RegistryNumber>
<NameOfSubstance UI="D020156">Salicylic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="Y">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017799" MajorTopicYN="N">Cucumovirus</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005818" MajorTopicYN="Y">Genetic Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009868" MajorTopicYN="N">Oomycetes</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000587" MajorTopicYN="N">Oxidoreductases Acting on CH-NH Group Donors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011073" MajorTopicYN="N">Polyamines</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044224" MajorTopicYN="N">Pseudomonas syringae</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020156" MajorTopicYN="N">Salicylic Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>2</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>2</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19218362</ArticleId>
<ArticleId IdType="pii">pp.108.134932</ArticleId>
<ArticleId IdType="doi">10.1104/pp.108.134932</ArticleId>
<ArticleId IdType="pmc">PMC2663742</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Anal Biochem. 1993 Nov 1;214(2):484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8109737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2003 Sep;64(1):97-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12946408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2006 Dec;28(23):1867-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17028780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Dec;36(6):820-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Aug;147(4):1845-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18583528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Dec;118(4):1213-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ultrastruct Res. 1969 Jan;26(1):31-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4887011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Aug;138(4):2174-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16040649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 May;20(5):450-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11981555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1996 Mar;9(3):341-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8919911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Nov;40(4):512-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15500467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(372):1367-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1985 Sep;79(1):62-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Apr;45(6):669-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11430429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 May;72(5):3350-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16672477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Sep;14(9):2059-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12215505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Jun;133(2):140-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18282192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Sep;142(1):193-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16844838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2008 Dec;3(12):1061-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19513239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2004 Jun;30(6):1203-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15303323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:251-275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 1992;41:281-348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1575085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2009 Apr 1;166(6):626-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18922600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7225-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9618567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Jul 3;19(13):3204-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10880434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Nov;7(11):1980-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18806214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jun;20(6):1708-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18577660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1414-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15064377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jan 24;278(4):2256-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12426314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Feb;9(2):209-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9061952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2003 Feb;67(2):322-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12728993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2006 Aug;7(8):601-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16936700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 May;138(1):142-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15849310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Aug;132(4):1973-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12913153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Oct;8(10):1651-1668</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12239356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2003 Aug;269(5):583-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12838412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2009 Jan 1;166(1):90-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18462831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Oct;8(10):1809-1819</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12239363</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Grèce</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Andriopoulou, Athina H" sort="Andriopoulou, Athina H" uniqKey="Andriopoulou A" first="Athina H" last="Andriopoulou">Athina H. Andriopoulou</name>
<name sortKey="Panopoulos, Nickolas J" sort="Panopoulos, Nickolas J" uniqKey="Panopoulos N" first="Nickolas J" last="Panopoulos">Nickolas J. Panopoulos</name>
<name sortKey="Paschalidis, Konstantinos A" sort="Paschalidis, Konstantinos A" uniqKey="Paschalidis K" first="Konstantinos A" last="Paschalidis">Konstantinos A. Paschalidis</name>
<name sortKey="Roubelakis Angelakis, Kalliopi A" sort="Roubelakis Angelakis, Kalliopi A" uniqKey="Roubelakis Angelakis K" first="Kalliopi A" last="Roubelakis-Angelakis">Kalliopi A. Roubelakis-Angelakis</name>
<name sortKey="Sarris, Panagiotis F" sort="Sarris, Panagiotis F" uniqKey="Sarris P" first="Panagiotis F" last="Sarris">Panagiotis F. Sarris</name>
<name sortKey="Skandalis, Nicholas" sort="Skandalis, Nicholas" uniqKey="Skandalis N" first="Nicholas" last="Skandalis">Nicholas Skandalis</name>
</noCountry>
<country name="Grèce">
<noRegion>
<name sortKey="Moschou, Panagiotis N" sort="Moschou, Panagiotis N" uniqKey="Moschou P" first="Panagiotis N" last="Moschou">Panagiotis N. Moschou</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B23 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001B23 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19218362
   |texte=   Engineered polyamine catabolism preinduces tolerance of tobacco to bacteria and oomycetes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19218362" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024